Malaria parasiteP. berghei
Genetic modification not successful
DisruptedGene model (rodent): PBANKA_1419700; Gene model (P.falciparum): PF3D7_1321400; Gene product: palmitoyltransferase DHHC8, putative (DHHC8)
PhenotypeNo phenotype has been described
Last modified: 8 June 2013, 14:20
Successful modificationThe gene/parasite could not be changed/generated by the genetic modification.
The following genetic modifications were attempted Gene disruption
Number of attempts to introduce the genetic modification 2
Reference (PubMed-PMID number) Reference 1 (PMID number) : 23638681
Parent parasite used to introduce the genetic modification
Rodent Malaria ParasiteP. berghei
Parent strain/lineP. berghei ANKA
Name parent line/clone P. berghei ANKA 2.34
Other information parent lineP. berghei ANKA 2.34 is a cloned, gametocyte producer line of the ANKA strain (PubMed: PMID: 15137943).
Attempts to generate the mutant parasite were performed by
Name PI/ResearcherK. Frénal, J.Rayner, O. Billker, E. Bushell, D. Soldati-Favre
Name Group/DepartmentMalaria Programme
Name InstituteWellcome Trust Sanger Insitute
CityCambridge Hinxton

  Disrupted: Mutant parasite with a disrupted gene
Details of the target gene
Gene Model of Rodent Parasite PBANKA_1419700
Gene Model P. falciparum ortholog PF3D7_1321400
Gene productpalmitoyltransferase DHHC8, putative
Gene product: Alternative nameDHHC8
Details of the genetic modification
Inducable system usedNo
Additional remarks inducable system
Type of plasmid/construct usedPlasmid double cross-over
PlasmoGEM (Sanger) construct/vector usedYes
Name of PlasmoGEM construct/vectorPbGEM-225987
Modified PlasmoGEM construct/vector usedNo
Plasmid/construct map
Plasmid/construct sequence
Restriction sites to linearize plasmid
Partial or complete disruption of the genePartial
Additional remarks partial/complete disruption
Selectable marker used to select the mutant parasitehdhfr/yfcu
Promoter of the selectable markereef1a
Selection (positive) procedurepyrimethamine
Selection (negative) procedureNo
Additional remarks genetic modificationThe unsuccessful attempts to generate of mutants with a disrupted gene indicate an essential role during asexual blood stage growth/multiplication.

This protein was selected in a study aimed at determining the repertoire of DHHC-CRD S-acyl transferase protein family as putative candidates for protein S-acyl transferases (PATs). The genes encoding these proteins were targeted for deletion to analyse their essentiality for blood stages In addition, mutants were generated that express a HA-tagged version of the protein to identify its cellular location.

Protein palmitoylation in particular is a fundamental, dynamic, and widespread posttranslational mechanism that controls transport, properties and activity of proteins across eukaryotes. Unlike other irreversible lipid modifications such as myristoylation and prenylation, the addition of a 16-carbon saturated palmitate group to the sulfhydryl group of a cysteine to form a hydroxylamine-sensitive thioester linkage, is a reversible modification. This constitutes a fast and dynamic mechanism to spatiotemporally control protein function by impacting reversibly on protein trafficking, stability and clustering. While palmitoylation frequently facilitates membrane association of a soluble protein by the addition of a hydrophobic anchor, this modification also occurs on transmembrane proteins, involving other effects such as structural conformation changes, protein-protein interactions or the clustering to specific lipid domains leading, for example, to assembly of signalling complexes.
Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of P. falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis.

The enzymes mediating transfer of palmitate from palmitoyl-CoA to a protein substrate were first identified in Saccharomyces cerevisiae and subsequently in mammals. Protein S-acyl transferases (PATs) belong to the DHHC family of proteins that exhibit a catalytic Asp-His-His-Cys conserved motif located within a cysteine-rich domain (CRD) and frequently between two transmembrane regions, facing the cytosol. Substrate recognition and catalysis occur after the protein substrates have associated with membrane via another lipidation.

Other mutants:
Search the RMgm-databese for the text term DHHC-CRD for a number of other related mutants
Additional remarks selection procedure
Primer information: Primers used for amplification of the target sequences  Click to view information
Primer information: Primers used for amplification of the target sequences  Click to hide information
Sequence Primer 1
Additional information primer 1
Sequence Primer 2
Additional information primer 2
Sequence Primer 3
Additional information primer 3
Sequence Primer 4
Additional information primer 4
Sequence Primer 5
Additional information primer 5
Sequence Primer 6
Additional information primer 6